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Abstract⎯During the life-cycle of an Information System (IS) its actual behavior may not correspond
to the original system model. However, to the IS support it is very important to have the latest model
that reflects the current system behavior. To correct the model the information from the event log of
the system may be used. In this paper, we consider the problem of process model adjustment (correc-
tion) using the information from event log. The input data for this task is the initial process model (a
Petri net) and an event log. The result of correction should be a new process model, better reflecting
the real IS behavior than the initial model. The new model could be also built from scratch, for exam-
ple, with the help of one of the known algorithms for automatic synthesis of the process model from
an event log. However, this may lead to crucial changes in the structure of the original model, and it
will be difficult to compare the new model with the initial one, hindering its understanding and anal-
ysis. Then it is important to keep the initial structure of the model as much as possible. In this paper
we propose a method for process model correction based on the principle of “divide and conquer”.
The initial model is decomposed into several fragments. For each of the fragments its conformance to
the event log is checked. Fragments, which do not match the log, are replaced by newly synthesized
ones. The new model is then assembled from the fragments via transition fusion. The experiments
demonstrate that our correction algorithm gives good results when it is used for correcting local dis-
crepancies. The paper presents the description of the algorithm, the formal justification for its correct-
ness, as well as the results of experimental testing on artificial examples.

Keywords: process mining, process model repair, Petri nets, process model decomposition, divide and
conquer
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INTRODUCTION
An event log of a process-aware information system (IS) contains a recorded history of supported pro-

cesses in the form of a more or less detailed list of events. Most modern ISs record such event logs. The
information from event logs can be used for analysis of IS’s real behavior and its improvement [3].

In this paper we consider the problem of process model correction (repair) based on the information
from an event log. The input data for this problem includes: (1) a process model for correction, and (2) an
event log. If the process model, which has been developed earlier, does not fit the current process execu-
tion, then the model needs to be corrected. This need arises quite often, since different changes can occur
during the life cycle of an information system.

Various formalisms can be used for process modeling. In this work we consider classical Petri net mod-
els, with an event log being defined as a multiset of sequences of event records, in which an event record
contains information about activity and the timestamp of its execution. As a result of repair the new pro-
cess model should reflect the IS behavior better than the initial model.

Different process discovery methods based on event logs are described in literature [6, 7, 10, 20, 23, 25,
27, 41, 42]. However, synthesizing a model “from scratch” from a changed event log can lead to a model

1 The article was translated by the authors.
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which is difficult to match with the initial one. This will complicate its understanding and analysis. There-
fore, the model correction problem is to repair the inconsistencies between a model and real behavior of
a system, and, as much as possible, save the initial structure of the model.

The general idea of the approach used in this paper is to correct the model using local patch-ups. We
propose to decompose the initial model into fragments, select the fragments which do not conform to the
event log behavior, and replace them with new repaired fragments. If the changes in the system behavior
are local and insignificant, a large part of the model remains unchanged. The general scheme of the
approach and its applicability criteria were presented earlier in [28].

This paper has the following structure. Section 1 contains a general description of the model repair
problem and an illustrative example. Section 2 gives a short overview of related work. Basic definitions and
preliminaries are given in Section 3. Section 4 describes the basic model correction algorithm based on its
decomposition into fragments. An enhanced version of the algorithm is presented in Section 5. Section 6
contains an experimental evaluation of the algorithm.

1. PROCESS MODEL REPAIR
We start with a motivating example.
Figure 1 shows a Petri net process model. This example process model from [3] is often used to illus-

trate methods of process model synthesis. A Petri net in this figure presents processing of expenses com-
pensation requests in some company. Such a model, in particular, can be automatically discovered from
the following event log:   . This log consists of three traces, each
of which is a sequence of events represented by names of executed activities. Time of event execution is
used only for event ordering, and can be omitted.

Let us assume, that this event log has been extended with a trace , which can not be replayed
by the model. In this new trace an activity  (“Check ticket”) is executed after the “Examine casually”
activity . It does not match the order of activities which is allowed by the model in Fig. 1, where all exam-
inations are executed strictly after the ticket check. Thus, the initial model does not conform the reality,
which is presented for us by the event log.

There are two ways to obtain a model, which reflects the actual process execution: a new model can be
discovered from the event log “from scratch,” or the existing model can be corrected using an information
about the new process behavior. When an initial model is of particular value – for example, it has a clear
and compact structure – the second approach is much more preferable. Figure 2 shows an example of a
possible model repair. Here Most of graphical structure of the original model remains the same. Further
we will present the algorithm which will allow to perform such a correction automatically.

Formulation of the Problem of Process Model Repair. Let  be an initial process model in a form of a
Petri net, and  be an event log, which contains the current behavior of the process. The problem is to
construct a Petri net  such that

–  can replay all traces from  (the model perfectly fits the log);

–  does not allow “too much” executions which are not presented in the log (the model is precise);

–  and  have a similar graph structure.
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Fig. 1. Example: A compensation requests processing (transition labels: a = Register request; b = Check ticket; c = Examine
casually; d = Examine thoroughly; e = Decide; f = Send rejection letter; g = Pay compensation; h = Re-initiate request).
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2. RELATED WORK

The idea of using information from event logs from process model repair has been proposed in [16] and
developed in [17], where authors propose an approach for improving the fitness between workflow-net
based process model and an event log. To do this, all the traces of event log are split into fitting and non-
fitting ones. Non-fitting traces are considered as a separate execution variant for which a sub-process
model is discovered, then embedded in the initial model.

Yet another way to repair business-process models, called “Automated Error Correction,” has been
introduced in [19]. The authors use the method of simulated annealing to find the optimal set of repair
operations, and discover one or more workflow nets which model the prescribed process without errors.
Note, that an information from event logs is not used here.

A. Polyvyanyy et al. proposed in [31] a method of “impact-driven repair.” This method takes into
account the impact of various repair operations on some properties of the repaired model. It can be used
when the number of permissible repair operations is bounded, and different operations have different
effects on the value of the final model. In such a formulation, the Petri net repair problem is reduced to
an optimization problem. Authors present the results of a large number of experiments which were con-
ducted to select the most efficient algorithm.

In [12] a method is proposed for improving the well-structured model of process based on a special
genetic algorithm, in which, along with four classic quality metrics typical for process mining (fitness,
precision, generalization, simplicity), the similarity of the discovered model with the original one is taken
onto account.

The basic idea of applying the divide & conquer principle for process discovery and conformance
checking was described in [2, 39]. More practical questions of process model decomposition are consid-
ered in [1, 38] and other papers. In particular, these works investigate methods for efficient automatic pro-
cess model discovery based on event log decomposition.

The re-composition problem is considered in [21, 22]. Authors investigate how to choose the most
appropriate fragment size for automatic process discovery. Process model and event log decomposition
can also be applied for performance improvement in conformance checking [29, 30, 35]. Some modular
approaches for process analysis were considered earlier in [5, 26, 33].

The task of the automatic simplification of the model is related to the model repair task. Model frag-
ments used in a small number of traces can be removed from it. This simplifies the model with a certain
decrease in its fitness to an event log. The methods of simplifying the model are proposed, for example,
in [18, 32]. A method for simplification of  fuzzy process models by removing the non-essential parts of
the model using frequency metrics is considered in [20].

The method proposed in this paper differs from the approaches described above. In our approach, the
decomposition of the model is used for the subsequent replacement of some fragments. If the discrepancy
between the log and the model is local, then the corrected model will differ from the original only by the
replaced fragments. This is especially important in cases where the original model was built by an expert,
and therefore well perceived by a person. The model, discovered from scratch, can be deprived of such

Fig. 2. Example: A corrected model.
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advantage. Another feature of our approach is that the set of activities is not changed during the repair.
This can be a disadvantage (if in reality this set has changed), or an advantage (we do not add any artificial
activities).

3. PRELIMINARIES

In this section, the basic definitions and concepts used in the work are given.

Multisets, functions, sequences. By  we denote the set of natural numbers including zero. Let  be a

set. A function , which maps each element of  to the number of its occurrences in , is a mul-

tiset over . By  we denote the set of all multisets over . A finite multiset can be specified by enu-

merating all its elements and indicating their multiplicity. For example, 

denotes the multiset with three occurrences of , one , and two . By abuse of notation, we extend the
standard set operations to multisets in the usual way.

For a function ,  denotes its domain, and f : X ↛ Y denotes a partial function. A function

f↾Q : Q ↛ Y is a projection of a (partial) function  onto a set  such that  f↾Q(x) = f(x). This

notation can be extended to multi-sets, e.g. [e3, c, d2]↾{c, d} = [c, d2].

By  we denote the set of all finite sequences over a set X, and we use triangle brackets for sequences,

e.g.  is a sequence of length . By  we denote the concatenation of two sequences,

σ↾Q is the projection of the sequence  onto the set .

Process models. In this paper, we use workflow nets (WF-nets) — a subclass of Petri nets — for mod-
eling processes.

A Petri net is a triple , where  and  are disjoint sets of places and transitions, and

 is a f low relation. For a transition  a preset  and a postset  are defined

as the subsets of  such that  and .

A labeled Petri net is a tuple , where  is a labeling function, which maps

transitions to activity labels from . A transition  is called invisible, if , otherwise it is called visible.

A marking  specifies a current state of a Petri net. A transition  is enabled in a marking

 iff . An enabled transition  may fire yielding a new marking , such that

 for each  (denoted ).

Definition 1. A workflow net (WF-net) is a labeled Petri net  with distinguished initial

 and final  markings such that

(1) there is one source place  such that , and ,

(2) there is one sink place  such that , and ,

(3) every node  is on a path from  to .

Figure 1 shows an example WF-net. Ellipses denote places and squares denote transitions. A black
token in the source place denotes the initial marking.

By  we denote the set of all visible transitions in . A transition label is called unique if it labels

exactly one transition in the net.  denotes the set of all visible transitions with unique labels in .

The union of two WF-nets is a WF-net , which is built by the union of sets of places, tran-

sitions, and flows: , where  ↛ 8A is a union of

 and , ,  if , and  if

. We assume further that all labeled transitions have unique labels.

Event logs. Let  be a set of process activities. Since only the names of activities and their
sequence are important for constructing the workflow model, we will assume that the event in the log is
the name of the activity, and we use the terms of the event and of the activity (name) as synonyms.
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We define a trace  as a finite sequence of activities from , i.e. . An event log (or log)  is a finite

multi-set of traces, i.e. . For example,  is an event

log with the same set of activities as the model shown in Fig. 1.

A projection of an event log  onto a set of activities  is a logL↾B = [σ1↾B, σ2↾B, …, σn↾B],

where σi↾B is a projection of the trace  onto . We call such log a sub-log of .

Conformance checking. The following four criteria are usually used for evaluation of model quality: fit-
ness, precision, generalization, and simplicity [3]. The first two are used for checking the conformance
between a model and an event log. Fitness shows to what extent the log traces can be replayed by the
model. Precision determines to what extent the model can generate behavior that is not represented in the
log. Generalization and simplicity characterize the properties of the model itself. Generalization shows
the level of model abstraction, and simplicity shows its compactness. A discussion on the meaning and
impact of these criteria can be found in [3, 11].

Fitness and precision are of utmost importance during process model repair. Simplicity value is also
important, the model should not become too complicated after correction. Besides that, we will measure
the similarity between initial and corrected models.

Let  be a workflow net with transition labels from . Its initial marking is  and final marking is .

Let  be a trace of . We say that a trace  perfectly fits a model N, if there is a sequence of

transition firings  such that the sequence of activities

 coincides with  after the deletion of all silent transitions. An event log  perfectly fits

, if each trace from  perfectly fits . For example, the set of traces , ,

 perfectly fits the model in Fig. 1.

A large number of methods for conformance checking are presented in the literature [4, 8, 9, 13, 15,
29, 30, 40]. In this paper, we use a method based on alignments [8]. An alignment is a special correspon-
dence between a trace and a sequence of transition firings in a Petri net. Figure 3 shows two examples of
an alignment. The top row of each alignment represents the trace from the event log, while the bottom row
shows the run in the model (its execution). Each event from a trace must correspond to the transition
labeled with the same activity name. If the action in the trace fails to match the corresponding transition
in the model execution, then  (skip) is added either to the trace or to the model execution.

The left part of Fig. 3 shows the alignment with perfect fitting. In the right alignment we have added
two skips, because otherwise this trace can not be replayed by the model.

Obviously, different alignments can be constructed for the same trace-run pair. A good (optimal) align-
ment has the minimal number of skips. Various approaches for constructing optimal alignments, which
are used for measuring model to log conformance, are considered in [8].

Process discovery. We apply process discovery methods to repair unfitting model fragments. A lot of
such algorithms were described in literature, in particular, in [6, 7, 10, 20, 23–25, 41, 42].

In this paper, we use the inductive mining [24] algorithm. This algorithm with certain parameters (we
use the setting inductive miner incompleteness) guarantees perfect fitness of the resulting model. For testing
we additionally use the ILP Miner, which allows to reduce the problem of model synthesis to a problem of
integer linear programming [41]. This algorithm also guarantees perfect fitness, if executed with suitable
parameters.

4. PROCESS MODEL CORRECTION USING DECOMPOSITION

In [28] we have proposed a general modular scheme for process model repair, which uses the Divide &
Conquer approach. Correcting the process model is divided into the following steps: (1) decomposition,
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(2) selection, (3) repair, (4) composition, (5) evaluation. In this paper, we consider a concrete implemen-
tation of that scheme, which can be defined as follows.

Let  be a set of acivities, and  be a set of all labeled WF-nets with labels from .

We define the repair algorithm as a procedure with an event log  and a labeled WF-net

 at its input, which returns a Petri net  perfectly fitting the log ,

i.e. , as a result.

The procedural parameters in the modular repair scheme are assigned to:

•  is the evaluation function based on alignments [8],

•  is the inductive process discovery algorithm [24], or the integer

linear programming algorithm [41],

•  is the algorithm from [28] which constructs the maximal decomposition,

•  is the composition algorithm based on fusion of transitions with the
same labels.

Informally, the repair algorithm can be described as follows. The initial model is decomposed into
fragments. For each fragment the algorithm constructs the corresponding sub-log using projection. Then
for each pair of the form (a sub-net; a sub-log) their conformance is evaluated. Fragments for which the
level of conformance is insufficient, are replaced using some process discovery algorithm. The resulting
model is then constructed by combining the fragments along boundary transitions with the same labels.

In [28] we have described the algorithm for the so called ’maximal decomposition’ initially proposed
in [2]. We use the maximum decomposition for splitting the network into subnets as follows. All nodes in
each fragment are divided into boundary (borderline) and internal. Places, invisible transitions, and tran-
sitions with non-unique labels can be internal nodes. Only visible transitions with unique – in the initial
net – labels can be boundary nodes. A decomposition is called maximal iff the following rule holds for
each of the fragments.

Within a fragment, each its internal node can be connected by an arc either with a boundary node, or
with another internal node. The boundary node can be connected only with internal nodes of its fragment.
Each visible transition with a unique label is divided between two or more fragments (its copy belongs to
each of these fragments). An initial marking is distributed between fragment in a natural way: the source
place belongs to exactly one fragment with the token residing in it. A maximally decomposed net can be
recomposed via fusion of boundary transitions with the same labels. Figure 5 shows a maximal decompo-
sition of the model shown in Fig. 1.

The most important property of maximal decomposition is that it is a emph valid decomposition. The
notion of valid decomposition for Petri nets was defined in [2]. Here we use a slightly modified definition
of valid decomposition adapted for WF-nets.

Definition 2. Let  be a WF-net with a labeling function . We call 

its valid decomposition iff for 

•  is a labeled Petri net,

• l i = l↾ ,

• ,

• , and

• .

We denote by  the set of all valid decompositions of .

Note, that for a given net, the maximal decomposition is unique. Moreover, it can be shown that the
maximal decomposition is a valid decomposition with the minimum possible size of fragments, i.e. it is
maximal.
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It was shown in [2] a valid decomposition can be used for decomposing the fitness checking procedure.
Based on these results, in [28] we have formulated the sufficient conditions for ensuring perfect fitness of
the repaired model.

Proposition 1. The modular repair scheme  ensures a perfect fitness if

1.  is a valid decomposition function;

2.  is a perfect discovery function, i.e. for any event log it returns a Petri net, which perfectly fits it;

3.  is a transition fusion merging all transitions with the same labels.

The proof of this proposition can be found in [28]. Note, that our repair algorithm completely satisfies
the conditions (1), (2), and (3). Indeed, we use

(1) maximal decomposition, which is valid,

(2) discovery algorithms, which guarantee perfect fitness by construction,

(3) simple transition fusion for subnets’ composition.

Let us consider an example of applying this algorithm. Suppose that we have an event log with traces

 and , and it contains no traces in which  precedes . Thus,  always precedes ,

if both appear in the log. Such an event log does not fit the model shown in Fig. 1. In this model, the tran-

sition  fires strictly before transitions with labels  and .

Figure 4 shows the model repaired using our modular approach. This model perfectly fits the log,

which consists of traces  and . The repaired model is not a workflow net, since it

has additional places -start and -end, which were added by the discovery algorithm. Note, that such a
model can be transformed into an equivalent workflow net by adding artificial source and sink places,

which should be connected with the places  and -start (  and -end) through silent transitions.

Places -start and -end significantly restrict the behavior of the repaired model. In particular, they

form a deadlock, which prohibits the execution of the cycle going through the transition . Although this
does not contradict the event log, on which the model was corrected, nevertheless, can lower the model
value. We remove places -start and -end as redundant to recover this problem. Such an operation does
not change fitness between the model and the event log, but it greatly increases the number of possible

model runs. Indeed, transitions  and  can now add tokens to places  and  in each step, whereas the

transition  can remove a token from the place . Therefore, precision of repaired Petri nets may
decrease.

In order to cope with this shortcoming, we propose the improved algorithm. It will be described in the
next section.

5. IMPROVED ALGORITHM FOR PROCESS MODEL REPAIR

Let us consider the construction of a model for repaired fragment in more details. Primarily, we max-
imally decompose the model from Fig. 1. Figure 5 shows the result, which consists of six fragments.

Then we calculate the fitness between each fragment and the corresponding log fragment. It turns out

that only the fragment  does not fit its sub-log. This fragment is replaced by the model synthesized
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using the inductive algorithm (see Fig. 6). Then we compose all fragments into the repaired model which
is shown in Fig. 4.

With close examination of the example, it becomes clear that during the repair we also worked with
boundary transitions of repaired fragment, over which were the fragments were divided, were also
affected. As a result, causal relations on boundary transitions were violated. and this led to a loss of preci-
sion of the final model.

We propose to enlarge a repaired fragment as a solution to this problem. Such an enlargement should
be done according to the certain rule. For each fragment that requires a replacement, it is suggested to
attach all adjacent fragments that perfectly fit their sub-logs. As a result of this operation, we can guarantee
that outer border of the changed fragment will be not changed during the discovery of a new net.

Indeed, let  be a
sequence of transition firings in a workflow net, going through a large fragment, where transitions

 belong to the fragment,  and  are boundary transitions, and  are

internal transitions. If we attach all neighbor fragments to the changed one, the transitions  and  will
to belong to one of the neighbor perfectly fitting fragments in the initial decomposition. Therefore, frag-

ments of firing sequences  and  also fit the event
log and they will be not changed by the repairing algorithm.

Figure 7 demonstrates attaching neighbors to the fragment  in our example net. This fragment has

two neighbors, namely  and , to be attached.

Definition 3. Let  be a fragment in some decomposition  of a workflow net . Neighbour

fragments of  are all fragments which have common transitions with it. The set of neighbours of  is

defined as follows: .

We define an enlarged fragment  for  as a fragment obtained by attaching to  all its neigh-

bors, i.e. .

We apply the procedure of fragment enlargement, when there are more than one unfitting fragments
in model decomposition, as follows.

Definition 4. Let  be a decomposition of a workflow net , and , where  is a set of

unfitting net fragments, аnd  is a set of other fragments. Obviously, . The fragment enlarge-
ment procedure consists of the following steps:
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1. Each fragment from  is extended by attaching its neighbors:  : ,

;  is a set of all enlarged fragment, and  is a set of all fragments which

were affected by the procedure; note, fragments can have common neighbors.

2. All affected fragments are removed from the initial decomposition 

3. The new decomposition includes enlarged fragments: .

Let us show, that the result of fragment enlargement is a valid decomposition.

Proposition 2. Let  be a valid decomposition of a net . Let  be an

enlarged decomposition in which two fragments are combined, that is  such that  and

. Then  is a valid decomposition, i.e. .

Proof. We need to show, that all five properties of valid decomposition are valid for .

(1) All subnets  are labeled Petri nets,  is also a labeled Petri net by the definition of
net union. There is one fragment in a final decomposition, which was constructed by combining two ini-

tial fragments, i.e.  such that  and . All other fragments were not changed,

i.e.  such that  and :  such that  and .

(2) For all subnets, except the two combined, nothing has changed. When we combine  and , we

have  by definition, and  if , or

 if . Thus, lk = l↾  for any .

(3) Each place remains in its fragment  for , since in the initial decom-
position each place belongs to exactly one fragment, and the set of places for the combined fragments is

, .

(4) Transitions at the fragment boundaries are visible and have unique labels. Indeed, we only decrease
the set of boundary transitions, when combine the fragments,

  .

(5) And finally, directly from the definition of the fragment combining we get: 
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We have shown that we keep the validity of the decomposition, when we combine two fragments. Com-
bining any number of fragments can be doe by sequential combination of pairs of fragments. Hence, the
decomposition with enlarged fragments is valid.

Thus, the basic (naïve) repair algorithm can be enhanced by adding one intermediate step. We decom-
pose the initial model, find the unfitting fragments, and enlarge them according to the described proce-
dure. The modified decomposition contains larger fragments. Then we replace unfitting fragments using
process discovery algorithm as earlier. We call this procedure the improved repair algorithm.

Let us consider an example of applying the improved algorithm. Assume, that we want to repair the

model shown in Fig. 1 according to the log which consists of the following traces: , ,

, . We need to replace the fragment  of the maximal decomposition,

which is shown in Fig. 6. Figure 7 shows how we attach neighbors to this fragment. Then, we project the

event log and obtain the sub-log, corresponding to the enlarged fragment: , ,

, . Figure 8 shows the model, discovered from this sub-log using the inductive

discovery algorithm.

Figure 9 shows the model, obtained by combining all fragments. It is easy to verify that this model per-
fectly fits the log used for repair. Moreover, the model reflects the event log more precisely than the
model, which has been discovered without fragment enlargement.

Note, that the places -start and -end, which were added by inductive discovery algorithm, can be

also removed from the model. Moreover, the entire fragment consisting of the places , -end and the

silent transition  was added to the fragment during the repair only because the cycle through the tran-

sition  turned out to be divided between several fragments.

6. EXPERIMENTAL VALIDATION

We have tested our approach on a number of artificial examples. The test setup has been implemented
as a plug-in for ProM 6 Framework [37]. The architecture of this software and other details of implemen-
tation are described in [34].

The test plan was as follows. First, a perfectly fitting event log for test models was prepared with the use
of the generator of event logs [36]. Then, we slightly changed the initial process models in order to spoil
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Table 1. Some experimental results (Similarity is measured with ProM plug-in Calculate Graph Edit Distance Similar-
ity [21], N-f – the number of fragments in decomposition, N-bf – the number of replaced fragments, Size – the number
of nodes in the model, Ch. – the number of nodes in changed fragments, Time – the working time in Milliseconds, test
configuration: Intel Core i7-3630QM, 2.40 GHz, 4 Gb RAM, Windows 7×64)

Model Method
Discovery 

algorithm
Fitness Precision Similarity N-f N-bf Size Ch. Time

SM1

Initial model 1 0.91 – – – 40 – –

New model 

discovery

Ind 1 0.91 0.51 – – 47 47 829

ILP 1 0.91 0.57 – – 38 38 10069

SM1–BL-1

Changed model 0.94 0.86 – – – 40 – –

Naive
Ind 1 0.57 0.97 19 1 40 3 2531

ILP 1 0.57 0.97 19 1 40 3 2531

Improved
Ind 1 0.91 0.95 19 1 40 7 2365

ILP 1 0.91 0.95 19 1 40 7 2842

SM1–BL-2

Changed model 0.89 0.89 – – – 40 – –

Naive
Ind 1 f 0.89 19 3 45 9 2983

ILP 1 0.5 0.94 19 3 39 9 3215

Improved
Ind 1 0.91 0.82 19 1 47 15 2426

ILP 1 0.91 0.88 19 1 41 15 4030

LM2

Initial model 1 0.59 – – – 133 – –

New model 

discovery

Ind 1 f f – – 166 166 2920

ILP 1 0.53 f – – 137 137 18116898

LM2–BL-1

Changed model 0.98 0.59 – – – 133 – –

Naive
Ind 1 0.28 f 63 2 133 7 10745

ILP 1 0.28 f 63 2 133 7 9588

Improved
Ind 1 0.59 f 63 1 133 12 9205

ILP 1 0.59 f 63 1 133 12 10339

LM2–BL-2

Changed model 0.99 0.59 – – – 133 – –

Naive
Ind 1 0.38 f 63 1 133 3 8048

ILP 1 0.38 f 63 1 133 3 12847

Improved
Ind 1 0.59 1 63 1 133 8 12960

ILP 1 0.59 1 63 1 133 8 8619

LM2–BL-3

Changed model 0.97 0.59 – – – 133 – –

Naive
Ind 1 0.23 f 63 3 133 10 8097

ILP 1 0.23 f 63 3 133 10 8855

Improved
Ind 1 0.59 f 63 2 134 21 9149

ILP 1 0.59 f 63 2 134 21 12410
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their perfect fitting to event logs. The repair algorithm has been tested on these examples. Table 1 shows
the obtained results.

We have changed two test workflow nets SM1 and LM2, which consist of 40 and 133 nodes respec-
tively. In each case we replace one or more pairs of transitions in the initial net. Thus, the models -BL1
and so on are obtained. Note that we on purpose change the models not significantly, since our approach
is intended for such cases.

Table 1 contains the results of process model repair using the three main approaches: model discovery
from scratch (using the log only), naïve and improved model correction methods. We have tested each
approach using two algorithms of process discovery, which guarantee perfect fitness of repaired model,
namely inductive (Ind) and integer linear programming (ILP) algorithms. Note that our evaluation plug-
in failed to calculate metrics in some cases due to high computational complexity. The memory of our
machine (4GB) was too small for some cases.

Note also that the results in Table 1 were calculated with removing of source and sink places in replaced
fragments, as is described in Section 4.

In this paper, we have described the model repair process using the small model shown in Fig. 1. This
is good for reasons of clarity, but the replaced fragment in this case includes most of the model. Note that
the effectiveness of our method is higher, the smaller the fragment of the model being changed. Figure 10 shows
how the approach deals with the test model LM2–BL3. An affected fragment is highlighted. Figure 11 shows
the model, which has been automatically discovered from the event log.

Our algorithm shows the expected results for all examples which are shown in Table 1. In all cases
repaired models perfectly fit the corresponding logs. The precision of a model decreases when we use the
naïve method. Moreover, in some cases the behavior of the model is so diverse that the available 4 Gb of

Fig. 11. The model discovered from scratch using the inductive miner from the event log of LM2 model.

Fig. 10. The repaired model LM2–BL3 (improved approach).
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RAM is not enough for the successful implementation of the algorithm for calculating the precision of the
model. With the application of the improved method, the precision for the considered cases can be com-
puted and is close to the precision of the original model.

In all considered examples a changed fragment is a small part of the model. In particular, in the largest
example we change 2 of 63 fragments, which together contain 21 transitions and places of the 133 nodes
available in the model.

Note, that model repair using ILP algorithm was significantly faster for considered examples, than the
automatical synthesis of a completely new model even taking into account the time spent on decomposi-
tion and additional fitness checks. This result is expected for such poorly scalable algorithms. A model
repair is expectedly slower using inductive algorithm. However, effectiveness optimization is not our goal
for now.

Concrete settings of the used process discovery and conformance checking algorithms can change the
result model. For example, one can set different costs for nonconformities in alignment-based confor-
mance checking. Thus, some nonconformities can be ignored, if the algorithm is properly configured.

Our method of model correction is not all-purpose. In particular, the problem of non-local repair
remains open. A process discovery from the log can be more appropriate than model repair, if changes in
a model are significant. Patches only work until a certain point, as for shabby clothes.

CONCLUSIONS

In this paper we have proposed a method of process model correction, which uses an information from
the event log. Our method is based on “Divide and Conquer” principle. The model is first divided into
fragments with clearly defined borders. Then the fragments, which do not fit this event log, are replaced
with new ones, constructed by using some known process discovery algorithms. Then, the repaired model
is composed from the fragments. The model obtained is fairly similar to the initial model, and fits the log.

In addition to the formal justification of the method correctness, the work contains the results of test-
ing this method using several artificial examples. These results demonstrate the applicability of the
method. It can be especially useful in the cases, when the initial model has been developed by an expert,
and thus, is well-understood by a human being. A model, discovered from scratch, can be correct, but
unreadable. Our method, however, repairs the model locally and saves its readability.

Nevertheless, the method proposed is not universal. It has proved itself in the case of local inconsis-
tencies, that is we can repair a model by replacing individual fragments. Currently, we are working on
improving it to adjust the size of the decomposition fragments. However, if the system’s behavior has been
changed crucially, a process model synthesis from scratch can be more simple and appropriate.

This work continues and specifies the [28], in which we have described the general modular process
repair scheme. In particular, here we present one of the several possible implementations of the scheme.
In future we plan to consider other potential implementations of the general scheme based on various ways
of process model decomposition. The method for process repair, which can add new activities into model,
has been described in [17]. We plan to study the possibility of combining this method with the algorithm
presented in this paper.
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